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Abstract

This work develops a general  mathematical  model  based on the continuity equation to 

explain the ultrafiltration membrane fouling phenomenon. In a filtration process the experimental 

conditions within the membrane change point by point as a function of time and position. For these 

two  variables,  the  differential  equations  of  flow,  permeate  flux,  active  membrane  area  and 

concentration profiles have been derived.  Furthermore classical  fouling models  as surface pore 

blocking model, internal pore plugging model and cake filtration model and others are described as 

particular cases of our general model. The mathematical methods used in this study constitute a 

promising step to predict permeate and fouling conditions for a membrane application.
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1. Introduction

Technology of  membranes  constitutes  a  tool  with  a  high  impact  in  the  innovation  of 

productive processes.  Within this technologies the ultrafiltration (UF) is used in such diverse fields 

as the production of high-grade injection water;  chemical applications as recycling electro coat 

paint;  food  processing  as  proteins  concentrations  and  fruit  juices  treatment;  microbial  cell 

harvesting and design of high-performance continuous fermentors [1-6].  The extent of uses is due, 

between others, to its ability to perform separations at ambient temperature, no change of phase is 

involved and it requires low hydrostatic pressure [7].  However, one of the serious hurdles in the 

applications of membrane technology is fouling of the membrane surface and it pores with organic 

and  inorganic  components  making  that  flux  decay  as  the  work  cycle  lengthens  [8-9].  The 

development  of  optimal  mathematical  model  to  explain  the  performance  process  lead  to 
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improvements  including  reduction  in  the  loss  of  production  time,  increased  lifetime  of  the 

membranes,  and improved permeate flux and quality control,  which bear direct  implication on 

process economics. 

In our opinion, to improve the membrane cleaning it is necessary a better understanding of 

the fouling during the process and a design of a more appropriate mathematical model that explains 

in detail  the variations of the permeate flux. In this work, we study a general model  with two 

variables, based on the continuity equation for a multi-component incompressible fluid that flows 

inside a filtration membrane. This mathematical model shows the behavior of the fluid velocity 

inside the membrane,  the time and spatial  variation of the flow, the concentration profiles,  the 

permeate flux and the variation of the active membrane area during the fouling process. Although 

this model is very general,  it describes in a simple way the models described in the membrane 

specialized bibliography as particular cases.

2. Differential equation for the flow, permeate flux and velocity inside the membrane.

It is clear that when we analyze in detail the filtration problem in a membrane two different 

phenomena can be observed in relationship with the variation of the permeate flux. One of them, a 

phenomenon  studied  for  many  cases  in  the  specialized  bibliography of  the  topic,  is  the  total 

variation of the permeate flux with time, modeled by the function )(tJ  which takes into account 

the experimental determination of this flux. It is worth remembering that the value of the permeate 

flux in an arbitrary time interval is the sum of the differentials permeate fluxes contributions in all 

the  differentials  length  of  the membrane. In  this  time  interval,  which  does  not  mean  that  the 

permeate flux along the membrane is the same for all the differentials length. In other words, the 

value of the curve )(tJ  is the sum (integral) of all the contributions of the differential longitudes, 

but each of them according to the spatial distribution function )(xJ  along the membrane. In a 

model of two independent variables this statement can be mathematically written as follows,
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where, L denotes the total length of the membrane, or the sum of the membranes length, if they are 

connected to each other. It occurs that the concentration of the fluid that circulates inside of the 

membrane increases causing the membrane fouling in a different way, especially if the membrane 

is long or there are a series of several connected membranes. Besides this, if the permeation is large 

the flow inside the membrane decays along the membrane as well as its velocity, which provokes 

that  the  shears forces become smaller  generating more favorable  conditions for  the membrane 

fouling.



In short membranes this phenomenon can be disregarded depending on the membrane type, 

the solution to concentrate and if it can be assumed that the flow through the membrane is constant 

everywhere. Fig. 1 shows a balance of the total flow of an element of length x∆ , in a membrane 

with arbitrary but  constant  area (generally circular).  Fig.  1 shows that  the output  flow will  be 

smaller than the input flow due to part of it is filtrated through the membrane.

In  the  mentioned  balance  any  restriction  to  the  permeate  flux  was  imposed. 

Therefore, the analysis is general and valid for any mathematical function of the permeate 

flux model. Fig. 1 shows that if the cross membrane area remains constant, the inside fluid 

velocity of the membrane will change according to the permeate flux, not only with the 

time but also along the membrane in  x direction. Due to this behavior, it is proposed a 

function for the permeate flux that depends on the variables x and t.

                                                                                                                                               

Figure 1

Flows balance in an arbitrary membrane differential area 

Due to the mass conservation principle of an incompressible fluid, one can write that,
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where

),( txQ  is the flow entering into the elemental volume.

),( txQV∆ is the permeate flow leaving the differential area of the membrane 

),( ttxxQ ∆+∆+ is the variable flow leaving the cross-area of the membrane.

Taking the Taylor expansion of these expressions up to the linear term in (x,t) we obtain,
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then simplifying,
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Dividing by x∆  Eq. (4) and taking the limit it can be rewritten as follows,
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Repeating the  process  but  dividing by  t∆  and  approaching the  limit  to  zero,  the  expression 

remains,
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Considering that  
t

x

δ
δ

has velocity dimension, we will denominate, characteristic velocity 

),( txv  and define it as,
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Thus it is possible to rewrite Eqs. (5) and (6) as follows,
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Multiplying by ),( txv  the Eq. (8) and solving the system, the following nonlinear partial 

differential equation for ),( txQV  is obtained,
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If the permeate flow is referred to the total active area of the membrane A0, the differential 

equation is expressed in terms of the permeate flux ),( txJ , defined as 0),(),( AtxJtxQV = , 

then
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which  is  the  searched  general  differential  equation.  Since  this  equation  does  not  have  any 

mathematical restriction it represents a general model, which relates the characteristic velocity with 

the permeate flux, at any position along all the membrane and arbitrary time t . 

Using Eqs. (8) and (9) after making a straightforward calculus we obtained the following 

differential equations,
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where S is the internal membrane cross area.

Resolving these equations with equal first terms the following expression is fulfilled, 
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which is a differential equation only in ),( txv , then,
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that can be rewritten as follows,
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which is the differential equation for the characteristic velocity or inside membrane fluid velocity, 

in this case, any consideration about the variation form of the permeate flow or flux functions has 

been made. 

If the cross section of membrane is constant, the inside velocity is proportional to the flow, 

then a similar equation based on the flow could be written as, 
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being this the differential equation for the flow that circulates inside the membrane.

2.1 A general solution of the differential equation for the characteristic velocity v(x,t) and the 

flow Q(x,t).

To integrate  the  non linear differential  Eq.  (18)  it  could be possible  to  begin with the 

general  integration  of  the  velocity  Eq.  (17)  and  multiply  its  solution  by  S.  Eq.  (19)  is  the 

differential equation for the fluid velocity,
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the integration was done by the separate variables method. After several calculates it is obtained 

the following result,
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that  it  is  the exact  solution of  the non linear  differential  Eq.  (19).  Where k ,  1c and  2c  are 

constants.

Therefore, the solution of the differential Eq. (18) for the flow would be the same of Eq. 

(19), multiplied by the constant S.
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2.2 An analytical and exact solution of the permeate flux J(x,t).

Because of the solution for the flow velocity  v(x,t) inside of the membrane was already 

obtained, it is possible to integrate in an analytical and exact form the differential equation for a 

permeate flux Eq.(11), 
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replacing the solution by the function v(x,t) in the following equation and after several changes of 

variables and straightforward calculus it is obtained the following result,
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which takes the following form,
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where, 
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in the point )0,0(),( =tx  the permeate flux is )0,0(J .
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expression of the analytical and exact solution of the differential equation of the permeate flux.

Fig. 2 shows a typical distribution of the permeate flux ),( txJ . In addition a membrane 

with length L has been drawn in the x  axis of the reference system.

  J(0,0)

     J(x,t)



 

3. Interpretation of some flux models.

Having the general solution for the differential equation of the permeate flux,
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it is possible to calculate the change of the flux in function of the time integrating over variable x 

for all the membrane length, in a graphic of  )(tJ , like of  the Fig. 3. The y-axis represents the 

permeate flux for all the membrane longitude at an arbitrary time t . Then,
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this relationship explains that the measured permeate flux in a certain instant t  is the sum of all 

contributions of the permeate differential fluxes through the membrane for all the ∆x of length. For 

this reason the equation is integrated between 0 and L being L the total length of the membrane or 

the sum of all the lengths of the membranes connected in series. 
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          dx

Lx =

 x

 J(x)
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Figure 2
Bidimensional distribution of the permeate flux

       J(t)



Figure 3

Definition of parameters in a typical curve of permeate flux in an 

UF experiment with BSA [ ]7 .

The most representative cases of the flux models are for 1=n , 2=n  and 5.0=n .

a) Case 1=n  (Surface pore blocking model) 

The integral equation of the flux for this model is, 
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whose integral is,
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a model of flux for pore blocking model [8]. The value for the permeate flux for 0=t  is formed 

for an expression that consider not only the constant L, which represents the membrane length, but 

also the parameter β, which characterized the spatial fouling profile through the membrane.

In this  model  the  constant  λ  is  a  parameter  that  describes  the  fouling characteristics 

associated to its process, and it is given by the following expression, 
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where [ ]1−mσ  is a parameter that characterize the potential fouling of the feed solution, mR  is 

the  resistance  of  the  membrane,  tmP  is  the  effective  transmembrane  pressure  and  µ  is  the 

solution viscosity. 

b) Case 2=n  (Internal pore plugging model)

In this case Eq. (29) could be written as,
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whose integral is,
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This expression corresponds to the internal  pore plugging model  [8].  In this  model  the 

parameter λ  is equal to,

ε
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where, in this case, ξ is an dimensionless parameter, which characterized the potential fouling of 

the solution, e is the width of the membrane and ε  is the initial annular fraction of the membrane, 

being 2
0rNπε = , where N  is the number of pores per membrane area unity and 0r  is the initial 

ratio of the pore before fouling.

c) Case 5.0=n  Cake filtration model

In this case Eq. (29) remains as,
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Integrating leads to the following result,
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which is the cake filtration model [8].



In this  model  the constant  λ  is a parameter,  which describes the characteristic of the 

fouling associated to the process, denoted as, 

2
02

m

tm

R

AP

µ
αλ =                                                                         (36)

where [ ]4−mα  is a parameter that characterized the potential of fouling of the feed solution, mR  

is the resistance of the membrane, tmP  is the effective transmembrane pressure, µ  is the solution 

viscosity and 0A  is the total active area of the membrane. 

To determine the constant βit has to be consider that, 
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)0,0()0,0( JJ =  at  )0,0(),( =tx , this value is unique, being the permeate flux in  the 

initial time 0=t  and the inlet area of the membrane 0=x . But this is not 0J , which value is,
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the value would be higher as the length of the membrane L increases, and lower if the parameter 

β increases. 

4.  Integration for a general filtration model

For an arbitrary model the equation for the flux would be written in function of an arbitrary 

exponent n by the general expression for a flux in two variables, 
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integrating,
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in this equation is necessary to save the indetermination for 1=n , which is the case of the surface 

pore blocking model.

Other interesting case of this model is that it considers the situation in which the permeate 

flux has the following form, 
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as it is presented by [ ]1 . Taking into account the characteristic velocity equation and rewriting it, 
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Choosing 1c  arbitrarily big and 0c2 = , ),( txv , the Eq. (42) takes the following form,
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introducing this relationship in the equation of the permeate flow Eq. (10), 
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it gives the following differential equation,
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after separating the variables,
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where 0>b is an arbitrary constant. The solutions for these equations are trivial, 
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then,
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The Eq. (48) could be transform in an equation for the permeate flux if it is divided by the 

initial active area of the membrane, leading to, 
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to see the variation of the permeate flux function with t  an integration over the x variable has to 

be done in all the membrane length, then, 
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if  we  develop the  constant  expression  in  terms  of  growing potentials  of  L,  it  is  possible  that 

choosing a constant K big enough, the permeate flux model can be written as, 
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expression that when it is K included becomes, 
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so the permeate flux can be expressed as,
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5. Differential equation for the concentration and its analytical and exact solutions.

The concentration of a given solution can be defined as, 
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where m is the mass solute and V is the solvent volume and the solution flow is defined as follows, 
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a simple equation for the mass flow of the solute could be,
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as the mass flow must be constant if there is not accumulation or elimination of the solute inside 

the membrane, therefore, 
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if the differential Eq.(57) is developed in series of Taylor and taking into account until the linear 

term, disregarding the second order differentials, it is obtained, 
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and disregarding the differential terms of second order, 
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reordering the expression,
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this equation is the exact differential of, 
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replacing ),( txQ for its value in the following equation it leads to,
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or, written in an other form, 
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),( txdQ  is  the  permeate  flow  in  a  differential  membrane  cross-area  and  in  this  way, 

proportional to the permeate flux, i.e. ),(),( 0 txdJAtxdQ = ,
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The Eq.(69) shows that the concentration is proportional  to the inverse function of the 

permeate flux. Introducing Eq.(27) in the previous relationship it is obtained that,

( ) ( ) ( ) ( ) nn
nn

txk
J

tx
ktxC λβλβ ++′=++= ∗∗ 11

11
),(

)0,0(

                                 (70)

the concentration profiles as a function of time and space also depend on the exponent  n, in the 

same form that for the permeate flux. In the Eq.(70), if x and t increase, the concentration depends 

on the  flux model  characterized by  n exponent,  and the  length of  the  membrane.  Thus,  for  a 

membrane with length L, the concentration profile in function of time will be, 
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which is valid for 1=n , 2=n  and 5.0=n .

It  is  interesting  to  notice  in  Eq.  (69),  that  the  flux ),( txJ  is  a  monotonous  falling 

function, then the concentration will increase in the same way.

6. Differential equation for the variation of the active area of the membrane. 

To analyze the decrease of the membrane active area during the filtration process, it is 

assumed that the fouling is blocking a fraction of the available membrane pores. As the immediate 

effect of the fouling is the reduction of the permeate flux, it could be consider that the decrease of 

the area is proportional to the instant value of the permeate flux, if the transmembrane pressure is 

maintained constant. Expressing this idea in a mathematically form, 

),(),( txdQtxdA σ−=                                                           (72)

Where ),( txdQ  was done in Eq. (59) and ),( txdA is given by,
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introducing Eqs. (60) and (73) in Eq. (72), we obtained,
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dividing by x∆  Eq. (74) can be written as a function of the flow velocity as, 
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Introducing  Eq.(20)  the  second  term  of  Eq.(75)  becomes  zero,  then,  the  differential 

equation for the membrane active area is,
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introducing the velocity in Eq. (76) and making )()(),( tAxAtxA = , we obtained
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which becomes in the following equations with separated variables, 
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their solutions are simple,
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denoting n
k

k =  the following equation is the corresponding solution, 
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If we integrated over the x variable, for all the length of the membrane L, the variation of 

the active membrane area with the time is obtained, 
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and the integral is,
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with a general form,
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meaning that the active area characterized by the exponent n, as in the case of the different types of 

flows  and  length  of  it.  This  more  general  result  is  in  agreement  with  the  theoretical  result 

previously found in Eq.(16) and verified experimentally in Eq.(44) [10]. In both cases a decrease of 

the  flow or  the  permeate  flux with  the  same  form of  the  reduction  of  the  active  area  of  the 

membrane is observed.

7. Conclusions

The  mathematical  treatment  carried  out  of  the  filtration  process  through  inorganic 

membrane,  lets  to evaluate the differential  changes of  permeate  flux,  flow velocity,  membrane 

active area and concentration profiles as a function of time and position within the membrane. The 

known fouling models can be obtained as particular cases of the general model deduced. The work 

performed is a promising contribution to understanding and analytic evaluation of the membrane 

fouling with the propose of a better performance in industrial membrane process applications.
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Nomenclature

A: membrane area

A0: total active membrane area

e: width of the membrane

J: permeate flux

k: constant  defined in Eq. (20)

k*: constant  defined in Eq. (64)

k: constant  defined in Eq. (78)

K: constant  defined in Eq. (43)

L: membrane length

N : number of pores per membrane area unity

tmP : effective transmembrane pressure



Q: flow

0r : initial ratio of the pore

mR  : resistance of the membrane

S: internal membrane cross area

t: time

v: velocity

x: longitude

Greek symbols

α  parameter that characterized the feed potential of fouling, Eq. (36)  

β parameter that characterized fouling profile

ε  initial annular fraction of the membrane

ξ dimensionless parameter, Eq. (35)

λ  constant  parameter

µ solution viscosity 

σ  fouling potential parameter, Eq. (32)
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