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FIBONACCI’S SEQUENCE OBTAINED BY A GENERAL RECURSIVE
FORMULA

by
Ezio Marchi *) **) and Gustavo D. Olguín ***)

ABSTRACT
The most general linear di¤erence equation has been introduced in the literature

and solved theoretically by Marchi and Millán in [3]. However, the explicit formula
has to be developed further for concrete applications. In some particular cases this is
more suitable than that obtained with linear algebra and eigenvales thecniques.Here,
we have applied our general recursive formula to two examples, namely to population
dynamic where the population grows and the individuals do not die, and the second
application is the classical Fibonacci’s sequence.We obtain a combinatorial solution
which one can compare with the Binet’s formula.

KEY WORDS: Fibonacci‘s secuence. Recursive formula. Di¤erence Equations
INTRODUCTION:
The Fibonacci’s numbers are a sequence of numbers 0,1,1,2,3,5,8,13,21,... where

the …rst two numbers are given and the other terms are obtained as the sum of the
two previous numbers of the sequence. If we write the n-th element of the Fibonacci’s
sequence by fn, then this sequence is completely de…ned for the equations: f0 = 0; f1 =
1and for n greater or equal to 2
fn = fn¡1+fn¡2 (1)
This equation is an example of the most general linear di¤erential equation which

the general form is:
xn+1 = ak+1

k xn+a
k+1
k¡1xn¡1+a

k+1
k¡2xn¡2+:::+a

k+1
2 x2+ak+1

1 x1+ak+1
0 x0+bk+1 (2)

This last equation is the most general equation for the linear di¤erence equations
which does not appear in the literature.

The problem of this recursive sequence is the determination of xn as a function of
x0 whitout give through the intermediate steps.

Let’s remember that this topic is very useful since this issue is quite vast and it
is applied to many topics mathematics …elds for example to the numerical calculus,
di¤erence equations, biomathematics, etc.
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Going back to the Fibonacci’s sequence, we know that it is possible to obtain the
solution by using the Binet ’s formula which derived from using the simple step with
linear algebra and eingevalues techniques.

This formula is a compact way that gives the n-th term as:
fn = 1p

5
(1+

p
5

2 )n ¡ 1p
5
(1¡

p
5

2 )n

Such a formula is extraordinary, because it is de…ned in terms of an irrational
number, even though all the Fibonacci’s number are integers.

Now in this short paper we are going to derive among other things a general
formula for the Fibonacci’s numbers which is done from a combinatorial point of
view.

Reference for Fibonacci’s numbers might be Golberg [2], Poole [3], and Rosen [9],
etc.

The equation (2) has been studied by Marchi-Millán with which they have derived
the general solution. Therefore Fibonacci’s numbers appear as a very particular case
of it.

Now we will study in general the di¤erence equation given by (2). Take the …rst
terms.
x1 = a10x0 + b1
x2 = (a21 a10 + a20) x0 + a21 b1 + b2
x3 = (a32 a21 a10 + a32 a20 + a31a10 + a30)x0 + (a32 a21 + a30)b1 + a23b2 + b3
The good observer will realize that any element of the sum of x3 is obtained by

giving ”jumps” from 3 to 0 and then multiplying the corresponding elements, for
example 3¡ >1, 1¡ >0; 3¡ >2, 2¡ >1, 1¡ >0 determines the elements a31 a10 and
a32 a21 a10 respectively.

The coe¢cients bi follow a similar law of formation. Thus, it is important to study
the set of all possible ”jumps”.

A GENERAL FORMULA
Let for a given natural k and r less or equal to k be the set
Ekr = f(l1; :::; lr) :

Pr
i=1 li = k ; li positive integersg

and for an element (l1; :::; lr)k 2 Ekr de…ne
ak(l1; l2; :::; lr)k = akk¡l1 a

k¡l1
k¡(l1+l2) a

k¡(l1+l2)
k¡(l1+l2+l3) :::a

k¡(l1+:::+lr¡1)
k¡k (3)

with r · k ¡ k and k = l1 + :::+ lr
In the paper by Marchi and Millán [3], they have shown that the general solution

is given by
xk =

hPk
r=1

P
(l1;:::;lr)k2Ekr a

k
(l1;:::;lr)k

i
x0+

Pk¡1
i=1

nPk¡i
r=1

hP
(l1;:::;lr)k¡i 2Ek¡ir a

k
(l1;:::;lr)k¡i

i
bi

o
+

bk (4)
This is indeed the solution of the di¤erence equation given by (2).
The proof of this fact which depends only on the coe¢cient a0s and b0s has not

been published yet.
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We have used the induction principle and the main idea is to split the set E’s into
smaller ones. Anyway we do not introduce here such proof and we will consider it in
a future publication.

EXAMPLES
We will now present two examples of di¤erence equations together with their

corresponding solutions. The …rst one is to consider all the a0s = 1 and the bi = 1:
xn+1 = xn + xn¡1 + xn¡2 + :::+ x1 + x0 + bn+1; n ¸ 0 integer
This model can be useful to interpret the grow of a population where individual do

not die. As simple example which we do not wish to be exhautive is the duplication
of a cell, as it is described by Thom [12]

For this sequence we have that for all (l1;:::;lr)and k · k :
ar (l1;:::;lr)

k = 1 ; bi = 1
Therefore the answer of our problem will be
xk =

hPk
r=1

¯̄
¯Ekr

¯̄
¯
i
x0 +

Pk¡1
i=1

hPk¡i
r=1

¯̄
¯Ek¡ir

¯̄
¯
i
+ bk; k = 1; 2; 3; :::

Where the number of the elements of the sets E’s are just related with multisets
presented in the book by Brualdi [1].

At the page 70 of this bibliography under the section 3.5 Combinations of Multiset
the number of it is¯̄

¯Ekr
¯̄
¯ =

³
k+r¡1
k+r¡1

´
=

³
k+r¡1
r¡1

´

The second example we now present the Fibonacci’s sequence.
xk+1 = xk + xk¡1 ; x¡2 = 0; x0 = 1; k = 0; 1; ::: (6)
We emphasize that x¡2 is the …rst element of the sequence. This is due to the fact

that we have the sequence shifted.. If one does not make such as transformation then
one has to go through a change of variable in (4).

In this case the coe¢cient for this sequence takes the form:
akk¡l =

n
1 if l=1 or 2
0 otherwise

o
bi = 0; for all i.

In such an instance then we have that (5) takes a particular solution for the Fi-
bonacci sequence. This is by means of a general formula.It is interesting how it is
formed by the values of the coe¢cients. For this reason we are consider those coe¢-
cients in (4) that are non zero.They are related with the ”jumps”.Those contributing
a positive value are those which posess the simple ”jumps” with values of one or two
as members of the multiplication. The simplest are the following:

For k=1 and r = 1, l1 = 1 we have
³
1
1

´
element. For k=2, r=2, there is the

possibility l1 = l2 = 1 and then
³
2
0

´
element. For k = 3 and r = 2 we have l1 = 2; l2 =

1 or l1 = 1 and l2 = 2 . The total number is
³
2
1

´
: On the other hand we have for

k = 3 and r = 3: l1 = l2 = l3 = 1:This case appears with the number
³
3
0

´
:

In order to obtain a general expression for an arbitrary number of ”jumps” we
give explicitly some more numbers for k.
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Let k = 4; then for r=3 we have l1 = 1; l2 = 2; l3 = 1; l1 = 2; l2 = 1; l3 = 1 or
l1 = 1; l2 = 1; l3 = 2

in this case the number of elements is
³
3
1

´
: For k = 4; and r = 4; it appears

that l1 = 1; l2 = 1; l3 = 1; l4 = 1: The number of elements is
³
4
0

´
: For k = 5; and

r = 3; it appears that l1 = l2 = 2 and l3 = 1; l1 = 2; l2 = 1 and l3 = 2; and
l1 = 1; l2 = l3 = 2:Consequently, we have

³
3
2

´
elements. For k = 5; and r = 4; then

we have l1 = l2 = l3 = 1; l4 = 2; l1 = l2 = l4 = 1; l3 = 2; l2 = l3 = l4 = 1; l2 = 2:
All these elements are

³
4
1

´
: Finally k = 5 and r = 4 all li = 1 and then we have³

5
0

´
:One might follow in this way as one wishes. In order develop the number of xk

of Fibonacci’s sequence one arrives to the general expression
xk+1 =

Pk+1
r¸[k+1

2 ]

³
r

k+1¡r

´
k = 0; 1; 2::: (7)

Where [a]; a ¸ 0 is the lower non-negative number greater than the entire part of
number a.

By the general formula expressing the solution given by Marchi and Millán, the last
expression is the solution of the Fibonacci’s sequence. However, there is a particular
interest to prove directly that such expression is indeed the solution.For this we will
apply the the induction principle.

Take k = 1 in (6). Then
x2 =

P2
r¸1

³
2

2¡r

´
=

³
2
0

´
+

³
1
1

´
= 2 + 1 =

P1
r=1

³
1

1¡r

´
+ x0 = x1 + x0:

Here, this is the …rst step of the induction principle. Now assume that the formula
(7) it is true for an even k = 2p where p is an non negative integer. We get: take k
in (7) and k-1, k-2 then we write down their expressions
xk+1 =

Pk+1
r¸[k+1

2 ]

³
r

k+1¡r

´
=

³
k+1
0

´
a
+

³
k
1

´
a
+

³
k¡1
2

´

b
+ :::

³
p+1
p

´
;

xk =
Pk
r¸[k2 ]

³
r
k¡r

´
=

³
k
0

´
a
+

³
k¡1
1

´
a
+

³
k¡2
2

´

b
+ :::

³
p
p

´
; (8)

together with
xk¡1 =

Pk¡1
r¸[k¡12 ]

³
r

k¡1¡r
´
=

³
k¡1
0

´
a
+

³
k¡2
1

´
a
+

³
k¡3
2

´

b
+ :::

³
p
p¡1

´
;

Using the equality:³
n
l

´
+

³
n
l+1

´
=

³
n+1
l+1

´
(9)

with k = n + 1 and l = 0; the term with a in the button of xk+1 are eliminated
with those corresponding to a and xk and xk¡1:The same happens with the terms b
and so until the last one.

The terms with a in xk+1 and xk are the same and then eliminated.
Therefore the last term of xk+1is

³
p+1
p

´
=

³
k=2+1
k=2

´
and of xk the last term is

³
p
p

´
:

The analogous element in xk¡1 is
³
p
p¡1

´
: By the relation (9) they cancel out. That is

to say the equation
xk+1 = xk + xk¡1
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is valid.
In the case that k is odd, then k = 2p+ 1;where p is an non negative integer.
We have the expression (8) in this case is similar to the expression for even k . The

only term that we have to be careful with one are the last one in their expressions.
For xk+1 the last term is

³
p+1
p+1

´
;analogously the last term in xk is

³
p+1
p

´
and then the

corresponding term in xk¡1is
³
p
p

´
:

Therefore the …rst part cancels out we the remainig two. Therefore (6) holds true
also for odd k .

Thus for the induction principle we have proved that (6) is valid.
This establishes a new formula for Fibonacci’s numbers which has a combinatorial

character.This matter is surely related with the material explained in the book by
Brualdi [1]. Perhaps in the future we are going to use it for our studies in this matter.

Thus we have the general formula (5) is rather powerful and general for a combi-
natorial point of view that makes easier than those given by linear algebra computing
the corresponding eigenvalue, for example see Poole [8].

FINAL REMARKS
In this paper we have observed that the general formula may be applied to many

problems as for instance how it is applied to population dynamics.
Another application was presented in the paper by Marchi and Vila [5]. As it is

well known the Ising model with nearest -neighborhood interacting has attracted the
attention of many investigations, in particular there are several methods for solving it.
For example the matrix method and the generating function method. However, when
more than the nearest-neighbor interactions are assumed in the physical problem,then
their solutions require approximations.

In the same paper, we developed a new recursive method which allows us to
obtain the exact analytical solution when higher-neighbor interactions are taken into
account. We applied an argument which allows as far as the third neigbor interaction
but we indicated the method for possible higher interaction.

We present a new method for evaluating the partition function in the thermody-
namic limit, …nally an application for this method to the computation of the recursive
matrix is worked out.

Another subject we have done was the integration or the exact solution of the
rate equation for the three level laser. The system of the two non linear di¤erential
equations describing a three level laser was solved exactly.It related the number of
the photons and the population inversion. The function describing this physical
quantities are expanded in a power series and recurring relations are obtained. This
was solved and the solution agrees with experimental results.

Further, we point out that the equation (7) has been generalized by Marchi and
Morillas [6] for any type of polynomial. In our knowledge we do not kwon whether
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this has been applied yet.
Finally, it would be very interesting to take limit and to pass to the continuous.
All this material is related with the solution of recusive equations. Perhaps there

would be some relations with the functional integrals. This could be interesting.
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