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Abstract

What happens when a firm does not want to be vertically integrated? Within a 

buyer-supplier relationship, and in a context of specific investments, we analyze 

firm interactions when they decide to cooperate instead of becoming vertically 

integrated.  We  develop  a  model  that  presents  an  alternative  to  vertical 

integration  with  firms  that  cooperate  with  each  other  under  incomplete 

contracts.  The contribution  of  our  approach is  twofold:  first,  a  mathematical 

component,  where  we  show  how  to  apply  the  maximin  to  compute  the 

characteristic functions of the model; and second, an economic element, where 

we  reconsider  the  upstream-downstream  relationship  under  a  cooperative 

framework and no integration. We find that the total generated value is Pareto 

optimum if  firms cooperate and distribute the benefits  following the Shapley 

value solution. Finally, the Shapley value measures the power that each firm 

has in the bargaining process.

KEYWORDS:  cooperative game,  Shapley  value,  core,  incomplete  contracts, 

specific investments, upstream-downstream relations, characteristic functions. 
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The theory of the firm deals with the boundaries of a firm and it also focuses on 

the coordination and motivation problems faced by the different participants. 

The first definitions of a firm were economic models that considered the firm as 

a black box where physical inputs and labor came out in an output, at minimum 

cost and maximum profit (Hart, 1995). This definition had important limitations 

that gave place to new theories of the firm. Coase (1937) is recognized as the 

first  researcher  to  provide  an  explanation  about  the  existence  of  firms.  He 

suggested  that  there  were  market  imperfections  that  generated  transaction 

costs and, in this context, the presence of firms may help to alleviate these 

market  failures.  In  particular,  this  author  argued  that,  under  some 

circumstances, transactions could be done through an organization at a lower 

cost rather than through markets. Later, in 1972, Alchian and Demsetz defined 

the firm “as a nexus of contracts” and they also provided a description of the 

“classical capitalist firm”.  

In 1975 Williamson took the concept of transaction costs given by Coase, and 

he elaborated it further. In fact, Williamson redefined the concept of transaction 

costs  and applied it  to  different  forms of  organizations,  not  just  the market, 

making  a  substantial  progress  in  the  study  of  the  firm.  His  most  important 

contribution  was  to  elucidate  the  roles  of  imperfect  contracts  and  specific 

investments (asset specificity, human specificity). Another important contribution 

was the fact of comparing the transactional efficiency of alternative governance 

structures, including vertical integration, non-standard contracts and relational 

contracts (Gibbons, 2000)

Williamson’s  works  opened  the  door  to  new  investigations  based  on  the 

ownership of the physical assets. Within this group, one can find the seminal 

work of  Grossman and Hart (1986), who defined the firm as “a collection of 

physical assets that are jointly owned” (Zingales, 1998). 

Although  the  ownership  of  physical  assets  has  been  used  to  explain  the 

boundaries of the firm and vertical integration serves as a mechanism to save 

transaction costs, another important problem remains: the specificity of human 

assets.   The  problem  of  specific  human  assets  in  a  context  of  vertical 

integration was already treated by Klein et al in 1978, at the time of describing 
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the problems between General  Motors  (GM) and Fisher  Body (FB).  Human 

assets cannot be acquired because they are inherent to human beings. Klein 

revisited the vertical integration between General Motors and Fisher Body and 

argued that the costs associated with vertical integration are generally incentive 

costs  that  are  unrelated  to  the  degree  of  specific  investments.  Therefore, 

vertical  integration becomes the most plausible solution when the degree of 

specific  investments  becomes  high  (Klein,  1988).  Vertical  integration  avoids 

transaction costs when the costs  are associated with  physical  assets,  but  it 

does not explain what happens when vertical  integration is linked to specific 

human assets.

Rajan and Zingales (2000)  indicate that  General  Motors was,  and still  is,  a 

vertically integrated firm, which controls the physical assets through ownership. 

However, they argue the nature of the firms is changing. Large conglomerates 

have  been  broken  up  and  their  units  have  been  spun-off  as  stand-alone 

companies. One example is Nucor, a steel manufacturer that abandoned the 

tradition of backward integration and out-sourced the entire supply chain of raw 

material (Holmström and Roberts, 1998).

As a result, vertical integration does not seem to be a good solution any more 

under certain circumstances. So we wonder if there is another way, different 

from vertical integration, to solve the problems. In particular, we analyze what 

happens  when  some  firms  decide  to  cooperate  instead  of  being  vertically 

integrated  in  a  scenario  with  the  presence  of  specific  investments.  More 

specifically,  what  happens  if  a  supplier  does  not  accept  to  be  vertically 

integrated and it prefers, instead, to deal with several customers? To answer 

these questions, we develop a model that attempts to bring a new alternative 

solution to the problem, a model where the firms negotiate and cooperate to 

each other in line with the observed practices of many companies. 

The  contribution  of  this  model  is  twofold:  first,  a  mathematical  contribution 

where  we  show how to  apply  the  maximin  that  is  included  in  the  Minimax 

Theorem (see  Marchi,  1967)  to  compute  the  characteristic  functions  of  the 

model; and second, an economic contribution to solve a supplier-manufacturer 

relationship. Doing this, we present an alternative way to look at the upstream-
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downstream  relationships  under  a  cooperative  framework  and  incomplete 

contracts.

We find that, under cooperation, the total value generated is Pareto optimum 

when they cooperate and distribute the benefits following the Shapley value 

solution.  In  fact,  the  Shapley  value  measures  the  power  that  the  different 

participants  have  in  the  bargaining  process.  The  bargaining  power  under 

cooperative game theory is determined by which player is needed the most 

(Brandenburger,  2007).  In  our  model,  the  bargaining  power  is  given by  the 

specificity  of  the  investment.  The  result  of  our  model  is  that  the  supplier’s 

bargaining  power  is  what  makes  the  cooperation  between  firms  possible, 

making  such  upstream-downstream  relationship  enforceable.  And,  as  a 

consequence, the first best that maximizes the total welfare can be achieved.

This paper proceeds as follows: in section 1, we present the literature review, 

while in section 2, the economic environment of the model is described. We 

develop a model under an incomplete and cooperative framework, being the 

core and the Shapley value the solutions to such model. Finally, in section 3, we 

present  the  conclusions  of  the  model,  followed  by  a  description  of  some 

limitations and future research avenues.  

1- LITERATURE REVIEW

The firm, as a black box where physical inputs and labor came out in an output, 

at minimum cost or maximum profit, has been the basic model of a firm for two 

hundred years. However, this theory presented important limitations because it 

takes  into  account  neither  the  incentives  inside  the  firm,  nor  its  internal 

structure.  In  addition,  it  did  not  establish  the  boundaries  of  the  firm.  These 

limitations gave place to the appearance of new theories of  the firm. Coase 

(1937) was the first researcher to give an explanation about the existence of the 

firms. He suggested that the markets were imperfect and firms existed to solve 

these  market  failures.  Coase  also  dealt  with  the  internal  organization  and 

suggested that firms would exist only in an environment in which they could 

perform better  than  markets  (Gibbons,  2000).  Furthermore,  he  argued that, 
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under some circumstances, transactions can be made through the organization 

at  a  lower  cost  rather  than  through  markets.  This  is  so  because  the 

organizations ameliorate some market failures and they have the advantage of 

using employment contracts as a way to save transaction costs.

Later, in 1972, Alchian and Demsetz defined a firm “as a nexus of contracts”. 

They said a firm is characterized by something more than legal status, namely 

the technology of team production, which means production with an inseparable 

production  function.  Thus,  they  introduced  the  free-riding  problem  in  team 

productions. Their solution was to propose the presence of a monitor, who had 

the right to fire and hire the members of  the team and, by doing that,  they 

described the “classical capitalist firm”  

In 1975 Williamson took the concept of transaction costs given by Coase and 

redefined it. In fact, Williamson introduced the transaction cost approach to the 

study of organizations, suggesting a new way of thinking about the firm and 

focusing on the analysis of transactions and contracts. In particular, he said that 

the  transaction  costs  approach  relies  on  two  assumptions  concerning  the 

individuals: 1) human agents are subject to bounded rationality, and 2) at least 

some agents may behave in opportunistic way (Williamson, 1981). Furthermore, 

the characteristics of the transactions, such as their frequency, the presence of 

specific assets and the presence of information asymmetries may be important 

sources  of  transaction  costs.  Economic  exchanges  could  be  efficiently 

organized  by  contracts  but,  due  to  bounded  rationality,  the  nature  of  the 

transactions  and  the  opportunistic  behavior  of  the  individuals,  contracts  are 

often incomplete. 

Williamson made a substantial progress in understanding the nature of the firm, 

and one key contribution was to elucidate the roles of imperfect contracts and 

specific investments (asset specificity and human specificity).  Asset specificity 

is critical because, once the investment is made for a determined transaction 

between a buyer and a supplier, the value of this asset becomes lower if it used 

in  a  different  transaction.  Then,  the  supplier  is  “locked into”  the  transaction 

(Williamson, 1981). This also applies to a buyer when the buyer cannot make 

transactions with others suppliers. 
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Another important contribution was to compare the transactional efficiency of 

alternative governance structures,  including vertical  integration, non-standard 

contracts  and  relational  contracts  (Gibbons,  2000).  An  example  of  vertical 

integration  was  treated  by  Klein  et  al  in  1978,  explaining  the  relationship 

between General Motors (GM) and Fisher Body (FB). General Motors signed a 

contract with Fisher Body in which GM argued to purchase all its closed bodies 

from FB for 10 years in 1919, and they agreed on a price for delivering based 

on a cost plus a margin, that also included provisions that GM would not be 

charged more than other rival automobile manufacturers. As it is well-known, 

GM  faced  a  much  higher  demand  than  the  forecasted  one,  increasing  its 

dependence on FB. As a response to this situation, GM was unsatisfied with the 

price settled and proposed FB to locate its body plants near the GM assembly 

plants, an offer that FB refused. As a consequence, GM started to acquire FB 

stock in 1924 and, finally, it completed a merger agreement in 1926. A GM car 

needed specific investments, and site specificity implied transaction costs. This 

vertical integration between GM and FB solved the problems associated with 

the presence of uncertainty in demand and costs.

Chandler (1977) and Porter and Livesay (1971) analyzed forward integration 

into distribution activities for the case of manufacturing firms. In retailing, vertical 

integration  was  made  for  those  commodities  that  needed  a  considerable 

number of sale information points. In this context, specific human assets were 

needed to provide service and achieve larger sales, and the integration into 

wholesaling occurred for those commodities that were perishable and branded. 

The  explanation  for  the  existence  of  forward  integration  is  that  the 

manufacturer’s  reputation was at  risk:  contracts  to  turn on  inventories  or  to 

destroy  stocks  were  neither  self-enforcing  nor  incentive  compatible.   As 

Williamson  (1981)  explained  “the  commodities  that  had  none  of  these 

characteristics (perishable and branded) were sold through market distribution 

channels where no special hazards were posed”.

Williamson’s analysis encouraged further research based on the ownership of 

physical assets. The seminal work of Grossman and Hart (1986), who defined 

the firm as “a collection of physical assets that are jointly owned”, is based on 
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Williamson’s approach, and along with Moore (1990) these authors developed a 

theory of  incomplete contracts and property rights.  There, it  is this notion of 

property rights what determines the right to take decisions concerning all the 

issues that are not explicitly covered in the contract (Zingales, 1998).

After this, when explaining the boundaries of the firm, most researchers have 

assumed  that  the  ownership  of  physical  assets  confers  the  right  to  take 

decisions. This means that the ownership of physical assets has been used as 

an incentive mechanism or a control mechanism to induce the agent to make 

the optimal effort or to carry out the optimal investment.

Our point is that even when ownership of physical assets is used to explain the 

boundaries  of  the  firm  and  vertical  integration  can  save  transaction  costs, 

another problem still remains: the specificity of human assets. As Klein (1988) 

pointed out, human assets cannot be acquired because they are inherent to a 

human being. In fact, this author revisited the General Motors and Fisher Body 

case and argued that the costs associated with vertical integration are generally 

incentive costs unrelated with the degree of the specific investments. Therefore, 

the vertical integration is the most possible solution while the degree of specific 

investment is high (Klein, 1988). So, vertical integration avoids the transaction 

costs when the costs are associated with physical assets but, what happens 

when vertical integration occurs in a context with specific human assets? In this 

case, vertical integration will not solve the transaction costs problem because 

the specific human capital is inherent to those human beings and it cannot be 

owned by a third party. Thus, the opportunistic behavior present in the original 

organizational  arrangement  is  not  eliminated  and  the  benefits  of  a  vertical 

integration process remain unclear.

In fact, if the conflict between General Motors and Fisher Body was only based 

on a hold-up problem of the investments in physical assets and specific human 

assets did not matter, the best solution would have been the acquisition by GM 

of the Fisher Body’s physical assets. But vertical integration, meaning that the 

Fisher brothers become employees instead of independent contractors, does 

not eliminate the potential hold-up. Ownership of the specific human asset was 

still belonging to the Fisher brothers. So, as Klein pointed out, the solution was 
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that  General  Motors  did  not  buy  the  closed  bodies  from  Fisher  Body,  but 

General Motors had to produce the closed bodies with the assistance of Fisher 

Body. General Motors was the owner of the plants and could determine where 

the plants were located, but the Fisher brothers became managers with the 

capacity to control or hold up GM with regard to specific investments in human 

assets.

This vertical integration implied that General Motors transformed not only the 

Fisher brothers into employees but also all the employees of Fisher Body into 

GM employees. General Motor stopped buying to start producing, acquiring in 

this way the organizational capital of Fisher Body Corporation. GM became the 

owner  of  all  employment  contracts  and  also  the  owner  of  the  knowledge 

concerning the production of closed bodies. It is in this way that General Motors 

owned the specific human asset (Klein, 1988). 

Furthermore,  this  solution  was  a  successful  one  because  the  number  of 

employees was huge. If few employees are involved, they can leave the firm 

and the organizational capital will be gone with them. But the threat that all the 

employees will leave the firm is not credible when the number of employees is 

so huge. After  the vertical  integration process, the Fisher brothers could not 

threat General Motors saying that all their former employees would leave the 

firm (taking their  knowledge with  them).  In  this  sense,  vertical  integration in 

organizations  with  large  human teams implies  the  ownership  of  the  human 

asset as it happens with physical assets. It is in this sense that Klein mentions 

that specific  human capital  can be acquired and that  the vertical  integration 

could be a solution under some circumstances.  

Rajan and Zingales (2000)  indicate that  General  Motors was,  and still  is,  a 

vertically integrated firm, that controls the physical assets through ownership. 

However,  as these authors point  out,  the nature of  many firms is  changing: 

“Large conglomerates have been broken up and their units have been spun-off 

as  stand-alone  companies.  Vertically  integrated  manufacturers  have 

relinquished  direct  control  of  their  suppliers  and have  moved  toward  looser 

forms of  collaboration”  (Rajan  and Zingales,  2000).  One example  of  this  is 

Nucor,  a  steel  manufacturer  that  abandoned  the  tradition  of  backward 
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integration and out-sourced the entire supply chain of raw material (Holmström 

and Roberts, 1998). Even General Motors is changing and it has facilitated the 

spin off of its major part supplier, Delphi. Toyota, and the relationship with its 

suppliers, provides another example of new forms of organization to deal with 

specific assets. In fact, Aoki (1990) talks of quasi-integration to refer to these 

links between Toyota and its suppliers which remain independent legal entities 

but exchange information and closely cooperate in the production process and 

the development of new products.

In summary, vertical integration seems not to be a good solution under some 

circumstances, as many researchers have already pointed out. This fact makes 

us  wonder  if  there  is  another  way  to  solve  these  problems  that  vertical 

integration does not address. In particular, we ask ourselves:  what happens if  

the firms decide to cooperate instead of being vertically integrated under the 

existence of specific investments? Additionally, what happens if the supply firm 

refuses to be vertically integrated?  To answer these questions, we develop a 

model attempting to bring a new alternative solution to vertical integration. We 

propose a model where the firms cooperate with each other and we find that the 

total value generated, under cooperation, is Pareto optimum if they distribute 

the benefits following the Shapley value solution.

We proceed now to mention briefly some important features of the Cooperative 

Game theory, before describing the model.

1.1- COOPERATIVE GAME THEORY

The game theory of an arbitrary set of players or agents is created by John von 

Neumann and Oskar Morgenstern in 19441. The game theory is the study of 

games,  also called strategic  situations (Serrano,  2007).  The game theory is 

divided in two main approaches: the cooperative and the non-cooperative game 

theory. The actors in non-cooperative game theory are individual players who 

1  Morgenstern, O., Neumann, von, J., 1944. Theory of Games and Economic Behavior. Princeton 
University Press. 
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may reach agreements only if they are self-enforcing, while in cooperative game 

theory, the actors are coalitions, group of players. As Serrano (2007) points out, 

the fact that a coalition has formed and that it  has a feasible set of  payoffs 

available to its members is now taken as given.

These two approaches of game theory imply two different forms to look at the 

same problem.  As  Aumann (1959)  puts  it,  “the  game is  one  ideal  and the 

cooperative and non cooperative approaches are two shadows”. Game theory 

models imply situations in which players make decisions to maximize their own 

utility, while the rest of the players do the same. The decisions of the latter affect 

each  other  utilities.  Cooperative  game  theory  looks  for  the  possible  set  of 

outcomes, study what the players can achieve, which coalitions will be formed, 

how the coalitions will distribute the outcomes and whether the outcomes are 

robust and stable (Sosic and Nagarajan, 2006).

The terms of non-cooperative game theory may, mistakenly, suggest that there 

is no place for  cooperation, and the term of  cooperative game theory might 

suggest that there is no room for conflict or competition. But as Brandenburger 

(2007) has already pointed out, neither is the case. Part of the non-cooperative 

game  theory  studies  the  possibility  of  cooperation  in  ongoing  relationships, 

while many papers that use cooperative game theory also include the possibility 

of competition among players. 

We follow a cooperative game approach that consists of two elements: 1) a set 

of  players  and  2)  a  characteristic  function  specifying  the  value  created  by 

different subsets of the players involved in the game. The cooperative game 

theory attempts to answer how the total value is divided up among the players 

and  this  answer  will  depend  on  their  bargaining  power.  Furthermore,  in 

cooperative game theory, a player’s bargaining power depends on how much 

other  players  need  him  to  form  coalitions,  or  his  marginal  contribution. 

Brandenburger defines it as follows: ”the marginal contribution of a particular 

player is the amount  by which the created overall  value would shrink if  this 

particular player leaves the game”. It is in this way that cooperative game theory 

captures  the  idea  of  competition  among  different  players  in  bargaining 

situations. 
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There  are  different  ways  of  solving  cooperative  games  and  we  want  to 

emphasize two of them: the core and the Shapley value. The core was first 

proposed by Francis Ysidro Edgeworth in 1881, and it was later reinvented and 

defined in game theoretic terms by Gillies (1953). The core is a solution concept 

that allocates to each cooperative game the set of payoffs that no coalition can 

improve upon or block (Serrano, 2007). Concerning the Shapley value, it was 

first  proposed by  Lloyd Shapley  in  his  1953 PhD dissertation.  This  solution 

prescribes a single payoff for each player, which is the average of all marginal 

contributions of that player to each coalition he or she is a member of (Serrano, 

2007).  

2- THE ECONOMIC ENVIRONMENT 

This  model  is  developed  under  a  cooperative  game  framework  and  the 

presence of incomplete contracts. Players take their decisions of buying and 

producing, depending on their expected benefits. To compute those expected 

benefits,  we  have  chosen  the  Shapley  value  solution  because  it  takes  into 

account what each player could reasonably get before the game starts.

More  specifically,  we  consider  a  model  with  three  agents,  two  downstream 

parties and one upstream party. The upstream party is a supply firm which sells 

its  product  to  the  downstream  parties.  The  supplier  has  to  make  specific 

investments to obtain the product q , which has no alternative use out of these 

relationships. We assume the existence of a parameter, λ , that measures the 

degree of investment specificity, where λ∈[0,1 ] . The higher the value of λ , the 

more specific the investment. If  λ=1 , the investment is fully specific, while a 

value λ=0  indicates that the investment becomes totally general. Furthermore, 

this product q  requires a quality process that is not observable to third parties 

and, therefore, it  is  not possible to write down an enforceable contract.  The 

supplier gets this q  at a cost λcs .
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The downstream parties buy the product from the supplier and they sell it  in 

different markets. Each firm is a monopoly in its market. These downstream 

firms have incentives to merge or to be vertically integrated with the supplier 

because  this  would  ensure  them  the  required  quality.  So  we  can  say  the 

downstream firms compete for the supplier giving him bargaining power, in the 

sense  that  both  downstream  firms  need  the  supplier.  In  this  model,  the 

bargaining power responds to the existence of specific investments. As a result, 

the incentive problem is twofold: on one hand, the downstream firms want the 

supplier  to  produce  under  a  given  quality  process.  On  the  other  hand,  the 

supplier, after having made the specific investments, faces the possibility that 

the downstream firms may argue that the product has not reached the required 

quality and, consequently,  they will  pay less for  the product or,  in the worst 

case, they will refuse to buy it.

We consider a one-shot supply transaction. The downstream firm 1 buys q1  to 

the supplier and the second firm buys q2 , such that q1q2=q  and q1 , q2 0 . 

The supplier has to make specific investments to produce these quantities at a 

cost  λcs1 , λc s2  and  sells  them  at  prices  w1 ,w2 ,  being  w1 ,w2≥0  and 

w1∈[0,w
−

1]  and w2∈[0,w
−

2 ]

The downstream parties buy the quantities at prices  w1 ,w2  and sell them at 

p1 , p2 , respectively. The prices p1 , p2 are positive and p1∈[0, p1

−

] , p2∈[0, p2

−

]  

and they are decided by each firm. The downstream firm 1 faces a demand2 

function given by  q1= f 1  p1=β1−γ1 p1  and the downstream firm 2 faces the 

demand  function  q2= f 2  p2=β2−γ 2 p2 .  For  simplicity,  we  assume  linear 

demand functions. Additionally, to guarantee that the inverse demand functions 

exist and they are well defined, we further assume that: 

1. the demand functions have negative slopes

2 For simplicity, it is assumed the demand function is known by the downstream parties. We know this is a 
strong assumption but if we assume expected demand functions, our results will remain unchanged.  
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2. f 1 , f 2  are  differentiable  functions  whose  first  derivatives  are  strictly 

negative  and  finite  for  any  p1∈[0, p1

−

] and  p2∈[0, p2

−

]  such  that 

f 1 , f 2 0 .

We also assume that 0≤w1≤ p1≤
β1

γ1
  and 0≤w2≤p2≤

β 2

γ2

The players of the model have transferable utilities and they are rational, so 

they take decisions that maximize their expected utilities. The respective utility 

functions  are:  U s=U Π s ε s  for  the  supplier,  U 1=U Π1ε 1  for  the 

downstream  firm  1  and  U 2=U Π 2ε2  for  the  downstream  firm  2. 

Furthermore,  εs , ε1, ε2 are  random variables  that  follow a  normal  distribution 

with  E ε s =E  ε1 =E  ε2 =0  and  variances  σ s2 , σ12 , σ 22 ,  respectively.  For 

simplicity, we also assume the different players are risk neutral. 

Finally, the players’ expected benefits are given by the following equations. 

Π 1=R1 q1 , p1 −w1q1 , for the downstream firm 1, where the revenue is equal to 

R1 q1 , p1= p1∗q1  

Π 2=R2 q2 , p2−w1q2 ,  for  the  downstream firm 2,  where  R2 q2 , p2 = p2∗q2 , 

and 

Π 3=q1w1q2w2− λcs1q1− λcs2 q2 ,  for the supplier.

2.1 -THE TIMING

 

As we mentioned earlier, the players decide to buy and produce in terms of their 

expected benefits. The timing of the model becomes as follows:
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Figure 1: Timing of the Model

At time 0, the downstream firms decide the quantity of product they will buy and 

the prices they are going to sell it. The supplier decides to produce this level of 

product, along with the quality and the price it will charge to the downstream 

parties. At time 1, the three firms will determine the payoffs and the distribution 

of the benefits according to the negotiation process. Due to the existence of 

incomplete information and the framework of incomplete contracts, the players 

decide  output  level  and  their  prices  as  a  function  of  their  expected  future 

benefits and their distribution 

2. 2- BENCHMARK

Under perfect information and complete contracts, we compute the first best. To 

compute  the  first  best  it  is  assumed  there  is  one  player  who  has  perfect 

information and is the owner of the assets. The firms act as one player who 

maximizes the total expected benefits ( Π T ). The equation of the total expected 

benefit is:

Π T= p1 q1−λcs1 q1 p2 q2− λcs2 q2 , being the demand functions 

q1= f 1  p1=β1−γ1 p1    and      q2= f 2  p2=β2−γ 2 p2 .   

To  assure  the  presence  of  a  maximum,  it  must  be  satisfied  that 

f x= f y=0

f
2
xx f

2
yy
−2f

2
xy
0

f
2
xx
0

So, the maximum is achieved.

The players decide the 
quantity to buy and 

produce, and the prices

0T 1T

Determination of the 
benefits and distribution 
of them as a result of the 

negotiation process
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∂Π T

∂ p1

= β1−2γ1 p1 λcs1γ 1=0

∂Π T

∂ p2

= β2−2γ 2 p2λcs2 γ2=0

From these derivatives, we get the prices and quantities that maximize the total 

net profit.

p2=
β2λcs2 γ2

2γ2
       and   q2=

β 2−λcs2 γ2

2

p1=
β1λcs1 γ1

2γ1
      and  q1=

β1−λcs1 γ1

2

The total benefit in the benchmark case becomes:

Π T=
 β1−λcs1 γ1

2

4γ1


 β2−λc s2γ 2

2

4γ2

Next, we will compare this benchmark solution with the results obtained under 

incomplete contracts and a cooperative game framework.

2. 3- THE NON-COOPERATIVE OR NASH SOLUTION

Before showing the model  under a cooperative game theory framework,  we 

compute the solution under a non-cooperative game framework. To do this, we 

use the Nash equilibrium definition. In our model, we need: 

Π 1 p1 , p2 , w1 , w2 ≥Π 1  p1 , p2 , w1 , w2  for all p1 (A)

Π 2  p1 , p2 , w1 , w2≥Π 2 p1 , p2 , w1 , w2  for all p2 (B)

Π 3 p1 , p2 , w1 , w2 ≥Π3  p1 , p2 ,w1 ,w2 for all w1 and w2 (C)

The equations of the model are the following:

Π 1  p1 , p2 ,w1 ,w2= p1−w1  β1−γ1 p1  (1)

for the downstream firm 1, where p1∈[0,
β1

γ1
]  and w1∈[0,

β1

γ1
]  

15



Π 2  p1 , p2 ,w1 , w2 = p2−w2   β 2−γ2 p2 (2)

for the downstream firm 2, where p2∈[0,
β2

γ2
]  and  w2∈[0,

β2

γ2
]

Π 3  p1 , p2 ,w1 ,w2 =w1−λc s1  β1−γ1 p1w2− λcs2   β 2−γ2 p2 (3)

for the supplier and λcs1≤w1  and λcs2≤w2 .

To compute the Nash solution we take equation (1) and apply (A) looking for the 

value p1  that maximizes equation (1), ceteris paribus.

The Nash solution to the downstream firm 1 is  p1=
β1γ1w1

2γ1

We do the same for the downstream firm 2, and the value p2  that maximizes 

the function Π 2   is    p2=
β2γ2w2

2γ2

Similarly,  for  the  supplier,  we  must  calculate  the  values  w 1  and  w 2  that 

maximize equation (3) given the rest of variables  p1 , p2  . The results are:

w 1=
β1λc s1γ1

2γ1

w 2=
β2λc s2γ 2

2γ2

Thus, once the prices w 1 and w 2  have been obtained, we replace them in p1  

and p2 , and we get:

p1=

3β1λcs
1
γ1

4γ1

  p2=

3β2 λcs
2
γ 2

4γ2

Replacing this solution in the equations (1), (2) and (3), the players’ net benefits 

become: 

Π 1=
 β1−λcs1 γ1

2

16 γ 1

Π 2=
 β 2−λcs2 γ2 

2

16 γ2
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Π s=
 β1− λcs1γ1 

2

8γ1


 β2−λcs2 γ2 

2

8γ2

As it  can  be  seen,  the  Nash Solution  shows us  the  effects  of  the  double-

marginalization. This is not an efficient result and, obviously, we do not reach 

the first best.

2. 4 - INCOMPLETE CONTRACTS AND COOPERATIVE GAME MODEL

Following  the  timing  of  the  model,  at  time  0,  the  three  players  decide  the 

quantity to sell and produce but these decisions will take into account the future 

benefits they expect to achieve at time 1. So, the players have to estimate their 

future benefits. To do this, we are going to use a cooperative game approach 

based on the subject of the Theorem of the Minimax created by von Neumann 

(1928).  Under  cooperative  games,  the  players  negotiate  and  compute  their 

payoffs under different coalitions. The fact of using the maximin to compute the 

payoffs implies that, in the negotiation process, the actors estimate the least 

amount they can get if the other players play against them; in other words, they 

compute the payoffs in the worst scenarios. In order to compute the payoffs or 

the  characteristic  functions  of  the  game,  we  must  define  first  what  a 

characteristic function is. The definition of a  characteristic function3 of an n-

person game assigns to each coalition, which is a subset S  of the players, the 

best payoff that each one can achieve without the help of other players. In other 

words,  that  is  the  value  v S   that  coalition  S  can  guarantee  for  itself  by 

coordinating the strategies of its members, no matter what the other players do. 

It is standard to define the characteristic value of the empty coalition, Φ , as 0 

so  v Φ =0 .  The  characteristic  function  implies  that  if  X s  is  the  set  of 

strategies  available  to  the  player  in  S ,  and  Y N−S  is  the  set  of  strategies 

available to the players in N−S , then 

v S =max x∈X s
min y∈Y N−S

∑
i∈S

ei  x , y  ,

where  e i  x , y   is the payoff to player  i  when  x  and  y  are the strategies 

played  by  the  players  of  the  parties  S  and  N−S .  This  is  for  the  mixed 

3 Thomas, L.C., 1984. Games, Theory and Applications. Ellis Horwood Limited
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extension of finite games. It follows from this definition that if  S  and  T  are 

disjoint coalitions for finite n-person games, we get:

v S∪T ≥v S v T  , if S∩T= {Φ } .

That is, superadditivity.

Once the characteristic  function is defined,  we present  the equations of  the 

model:

Π 1  p1 , p2 ,w1 ,w2= p1−w1  β1−γ1 p1  (1)

for downstream firm 1, where p1∈[0,
β1

γ1
]  and w1∈[0,

β1

γ1
]  

Π 2  p1 , p2 ,w1 , w2 = p2−w2   β 2−γ2 p2 (2)

for downstream firm 2, where p2∈[0,
β2

γ2
]  and  w2∈[0,

β2

γ2
]  and

Π 3  p1 , p2 ,w1 ,w2 =w1−λc s1  β1−γ1 p1w2− λcs2   β 2−γ2 p2 (3)

for  the  supplier  and  λcs1≤w1  and  λcs2≤w2 .  The  degree  of  investment 

specificity, λ , is high and it could be close to one in this model.

The possible coalitions of the model are:

v φ  , v 1  , v 2  , v 3  , v 1,2  , v 1,3  , v 2,3  , v 1,2,3  .

The  computation  for  the  characteristic  function  for  the  downstream  firm  1 

becomes as follows:

First, we take equation (1) and apply the maximin

v 1 =max
p1

min
p2 , w1 ,w2

Π1  p1 , p2 ,w1 ,w2 =max
p1

min
p2 ,w1 ,w2

[ p1  β1−γ1 p1 −w1  β1−γ1 p1  ]  

(4)

We must find the minimum values of p2 ,w1 ,w2  that minimize this function for a 

given p1 , and then we will maximize that function with respect to  p1 . In our 

context,  the minimum value of  w1  that minimizes this function given  p1  is 
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w1=
β1

γ1
,  so we replace this  value in the function and look for  the  p1  that 

maximizes the function.

v 1 =max
p1

[ p1  β1−γ1 p1−
β1

γ1
 β1−γ1 p1 ]=maxΠ

1
p1

 p1 , p2 ,w1 ,w2

∂Π 1

∂ p1

= β1−2γ1 p1 β1=0

To ensure the existence of a maximum, we check the second derivative 

∂
2Π1

∂ p
12

=−2γ1 . It is negative and, therefore, we have got a maximum.

Thus, p1=
β1

γ1
   and  q1=0 , and replacing these values in the function (4) we 

get that the characteristic function for the downstream firm 1 becomes:

v  {1 } =v 1 =0 . (5)

This is the payoff that the player 1 will have in his worst scenario. It means that 

if the supplier charges him the highest price w1=
β1

γ1
, which is the highest cost 

that the downstream firm 1 can face, the downstream firm 1´s best response is 

to set the highest price of p1=
β1

γ1
 where the demand quantity is equal to 0. In 

that case, he gets zero profits. 

The steps to compute the characteristic function to the downstream firm 2 are 

similar to the ones already computed for downstream firm 1. We proceed to 

simply write down the results and present the equation (6).

v 2 =max
p2

min
p1 ,w ,w2

Π 2  p1 , p2 ,w1 , w2 =max
p2

min
p1 ,w1 ,w2

[ p2  β2−γ 2 p2−w2  β 2−γ2 p2 ]

p2=
β2

γ2
    and  q2=0
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The characteristic function or the payoff that downstream firm 2 will receive in 

case that the other players join themselves against him becomes 

v 2  {2 } =v 2 =0 (7)

Equations (5) and (7) or the characteristic functions for the downstream firm 1 

and the downstream firm 2, indicate the lowest value that they are able to get 

under the worst scenario. 

Similarly, for the supplier, the characteristic function becomes:

v 3 =max
w1 ,w2

min
p1 , p2

Π3  p1 , p2 ,w1 ,w2=

max
w1 ,w2

min
p1 , p2

[w1  β1−γ1 p1w2  β2−γ2 p2 − λcs1  β1−γ1 p1 −λc s2  β2−γ2 p2  ]

We have to look for the minimum values of p1 , p2  that minimize the function. 

These values are:

 v 3 =max
w1 ,w2

[ w1−λcs1  β1−γ1

β1

γ1
w2−λcs2  β2−γ2

β2

γ2
]

v 3 =max
w1 ,w2

[0 ]

The characteristic function for the supplier is:

v  {3 } =v 3 =0 (8)

The equation (8) is telling us the value that, in the worst case, the supplier gets. 

We can think that this is the case that the downstream firms join together and 

argue that the quality is not the one required and they do not want the product. 

The supplier´s payoff is zero because the supplier cannot force the downstream 

parties to buy the product. 
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The characteristic function for the coalition  v 1,2   is obtained considering the 

sum of  Π 1Π 2  because the  coalition  {1,2 } gets the payoff  of  both  players 

together.

v 1,2 =max
p1 , p2

min
w1 , w2

[Π1  p1 , p2 , w1 ,w2Π 2  p1 , p2 ,w1 ,w2  ]=

max
p1 , p2

min
w1 , w2

[ p1  β1−γ1 p1−w1  β1−γ1 p1p2  β 2−γ2 p2 −w2  β2−γ 2 p2  ]

Looking  for  the  minimum values  of  w1 ,w2  that  minimize  the  function  and 

replacing them, we obtain (9):

v 1,2 =max
p1 , p2

[ p1  β1−γ1 p1−
β1

γ1
 β1−γ1 p1  p2  β2−γ2 p2−

β
γ2

 β2−γ2 p2 ]=max
p1 , p2

[Π1Π 2 ]  

We have to look for the values of  p1 , p2  that make the function maximum. 

Thus,  we derivate  with  respect  to  p1 and p2 .  The first  derivatives  must  be 

equal to 0 and the second ones must be negative to ensure the presence of a 

maximum.

∂ [Π 1Π2 ]
∂ p1

=2β1−2γ1 p1=0
∂

2
[Π 1Π2 ]
∂ p

12

=−2γ1

∂ [Π 1Π2 ]
∂ p2

=2β2−2γ 2 p2=0                    
∂

2
[Π 1Π2 ]
∂ p

22

=−2γ2                

These values are:

p1=
β1

γ1

q1=0

p2=
β2

γ2
                                         q2=0

Replacing in equation (9) we get the characteristic function

v  {1,2 } =v 1,2 =0 (10)

This is the payoff that will get the coalition between the downstream parties in 

the worst condition that the supplier is against them. The supplier will charge 

them the highest price and their response will be to put the highest prices and 
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they will sell 0. The benefits they get are equal to zero in the worst condition. 

This equation points out the fact that if the downstream firms cooperate with 

each other, without any consideration of the third player (the supplier), they will 

be able to get 0. They cannot force the supplier to invest and sell  them the 

product.  

The characteristic function for the coalition v 1,3   is:

v 1,3 =max
p1 ,w1 ,w2

min
p2

[Π1  p1 , p2 ,w1 ,w2Π3  p1 , p2 , w1 ,w2 ]=

max
p1 ,w1 , w2

min
p2

[ p1  β1−γ1 p1w2  β2−γ 2 p2 − λcs1  β1−γ1 p1−λcs2  β2−γ 2 p2  ]

Looking for the minimum value of p2  that minimizes the function, we get:

v 1,3 =max
p1 ,w1 ,w2

[ p1  β1−γ1 p1w2 β 2−γ2

β2

γ2
−λc s1  β1−γ1 p1−λcs2  β2−γ 2

β 2

γ2
]  

v 1,3 =max
p1 ,w1 ,w2

[ p1  β1−γ1 p1−λcs1  β1−γ1 p1  ]=max
p1 ,w1 ,w2

[Π1Π 3]    

(11)

Now, we have to find the value of p1  that maximizes (11)

∂ [Π 1Π3 ]
∂ p1

=β1−2γ1 p1λc s1γ1=0
∂

2
[Π 1Π3 ]
∂ p

12

=−2γ1

p1=
β1λcs1 γ1

2γ1
    q1=

β1−λcs1 γ1

2

Replacing these values in the equation (11), we get the characteristic function

v  {1,3 } =v 1,3 =
 β1−λc s1γ1 

2

4γ1

(12)

This is the payoff that the coalition between the downstream firm 1 and the 

supplier  can get if  the downstream firm 2 is assumed to oppose them. The 

supplier will produce q1=
β1−λcs1 γ1

2
 and the downstream will sell it at the price 

p1=
β1λcs1 γ1

2γ1
.  The  characteristic  function  implies  that,  under  any 

circumstances, the downstream firm 1 and the supplier, together, are sure to 
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obtain the least amount given by this equation. This result is the same as if the 

supplier and the downstream firm 1 were vertically integrated. It is necessary to 

note that this coalition makes sense if the investments are specific because, if 

the investments were general, the players neither need to form coalitions nor to 

be vertically integrated. 

Doing  the  same  for  the  coalition  between  the  downstream  firm  2  and  the 

supplier, we get:

v 2,3 =max
p1 ,w1 ,w2

min
p1

[Π 2  p1 , p2 ,w1 ,w2 Π3  p1 , p2 ,w1 ,w2 ]=

max
p2 ,w1 , w2

min
p1

[ p2  β2−γ 2 p2 w1  β1−γ1 p1 − λcs1  β1−γ1 p1−λcs2  β2−γ 2 p2  ]

Looking for the minimum value of p1  that minimizes the function, we get:

v 2,3 =max
p2 ,w1 ,w2

[ p2  β 2−γ2 p2w1 β1−γ1

β1

γ1
− λcs1β1−γ1

β1

γ1
−λcs2  β2−γ 2 p2 ]

v 2,3 =max
p2 ,w1 ,w2

[ p2  β 2−γ2 p2−λcs2  β2−γ2 p2 ]=max
p2 ,w1 ,w2

[Π2Π 3] (13)

Now, we have to find the value of p2  that maximizes (13)

∂ [Π 2Π 3]
∂ p2

= β2−2γ 2 p2λcs2 γ2=0
∂

2
[Π 2Π3 ]
∂ p

22

=−2γ2

p2=
β2λcs2 γ2

2γ2
    q2=

β 2−λcs2 γ2

2

Replacing these values in the equation (13), we get the characteristic function

v  {2,3 } =v 2,3 =
 β 2− λcs2 γ2 

2

4γ2

(14)

This is the payoff that the coalition between the downstream firm 2 and the 

supplier can get if the downstream firm 1 acts against them. The supplier will 

produce  q2=
β 2−λcs2 γ2

2
 and  the  downstream  will  sell  it  at  the  price 
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p2=
β2λcs2 γ2

2γ2
.  The  characteristic  function  implies  that,  under  any 

circumstances, the downstream firm 2 and the supplier, together, are sure to 

obtain the least amount given by this equation. As in the previous case, this 

result is the same as if the supplier and the downstream firm 2 were vertically 

integrated.

The characteristic function for the coalition 1,2,3   is given by:

v 1,2,3 = max
p1 , p2 ,w1 ,w2

[Π1  p1 , p2 ,w1 ,w2Π 2  p1 , p2 ,w1 ,w2 Π 3  p1 , p2 ,w1 ,w2  ]=

max
p1 , p2 ,w1 ,w2

[ p1  β1−γ1 p1 p2  β2−γ 2 p2 − λcs1  β1−γ1 p1−λcs2  β2−γ 2 p2  ]

And now we must find the values p1 , p2  that maximize the function.

∂ [Π 1Π2Π 3 ]
∂ p1

=β1−2γ1 p1λcs1 γ1=0
∂

2
[Π 1Π2Π 3]

∂ p
12

=−2γ1

p1=
β1λcs1 γ1

2γ1
    q1=

β1−λcs1 γ1

2

∂

∂ p2

= β2−2γ2 p2 λcs2 γ2=0
∂

2

∂ p
2

2

=−2γ2

p2=
β2λcs2 γ2

2γ2
    q2=

β 2−λcs2 γ2

2

Replacing these values in the equation we get that:

v  {1,2,3 } =v 1,2,3 =
 β1−λc s1γ1 

2

4γ1


 β2− λcs2γ 2

2

4γ2

(15)

This expression is the characteristic function of the grand coalition. This is the 

maximum payoff that the grand coalition, or total coalition, can achieve if they 

decide  to  cooperate  with  each  other.  If  we  compare  this  payoff  with  the 

benchmark, we can observe that we reach the first best if the players decide to 

cooperate all together.  If we also compare this result with the non-cooperative 

solution, we can argue that the solution under cooperative framework is better 

than  the  one  under  non-cooperative  framework  where  the  benefits  for  the 

players are lower due to of the presence of double marginalization.
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Once we have computed the characteristic function for all  the coalitions, we 

also  know that,  due  to  the  definition  of  the  characteristic  function  given  by 

Thomas (1984), if S  and T  are disjoint coalitions, we get:

v S∪T ≥v S v T  , if S∩T= {φ } . Where φ  stands for the empty set.

So, in our model, the following expressions are satisfied 

v 1,2,3 ≥v 1 v  2 v 3 

v 1,2 ≥v 1 v 2 

v 1,3 ≥v 1 v 3 

v 2,3 ≥v 2 v 3 

v 1,2,3 ≥v 1,2 v 3 

v 1,2,3 ≥v 1,3 v  2 

v 1,2,3 ≥v 2,3 v 1 

v 1,2,3 v 3 ≥v 1,3 v 2,3 

v 1,2,3 v 1 ≥v 1,2 v 1,3 

v 1,2,3 v 2 ≥v 2,3 v 1,2 

This means that superadditivity holds for the characteristic function. We also 

know that the presence of superadditivity indicates that the introduction of one 

player  into  the  coalition  adds  value  to  it.   Therefore,  this  means  that  the 

marginal contribution of each player   added to a coalition, is not null.

To solve this model, we use the core as the solution and then the Shapley Value 

that  is  the  baricenter  of  the  core.  For  a  convex  characteristic  function,  we 

determine how the benefits of the model can be split between the players under 

the negotiation process. In other words, we are going to solve the model taking 

into account the possible set of rewards that the players can reach. We will 

consider the entire problem to find the solution, given that the game is essential. 

That  the  game  is  essential  implies  that  the  characteristic  function  is 

superadditive  and  therefore,  for  two  disjoint  coalitions  the  value  of  the 

characteristic function of the union is strictly greater that the sum of the value of 

the  individual  characteristic  functions.  This  is  equivalent  to  say  that 

v 1 v 2 v 3 v 1,2,3    (Myerson, 1991).

 2.5- THE CORE AS A SOLUTION OF THE GAME

Having the characteristic function of the game of the two downstream firms and 

the supplier, it is important to find a suitable concept of solution. For this reason, 
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first we choose the core as a possible solution. Previous to define the core, it is 

necessary to define an imputation4.  An imputation in an  n-person game with 

characteristic function v  is a vector x= x1 , x2 , .. .. , xn   satisfying the following:

(i) ∑
i=1

n

xi=v N ;

(ii) x i≥v  i  , for i=1,2, .. . .. , n

Where  x i  is obviously the ith player´s reward. The condition (i)  is a Pareto 

optimality condition or the rationality of the grand coalition. v N   is the most the 

players  can  get  out  of  the  game  when  they  all  work  together.  So,  for  any 

possible set of individual rewards x i ; we must have ∑
i=1

n

xi≤v N  . If this was a 

strict  inequality,  then,  by  working  together,  they  could  always share  out  the 

rewards so that everyone got more. The condition (ii) says that everyone must 

get as much as they could get if they played by themselves.

Once we had defined the imputation concept, we introduce the concept of the 

core (Gilles, 1953).  The core of a game  v ,  denoted by  C v  ,  is the set of 

imputations which are not dominated for any other coalition. This means that 

you can not find another imputation y  and a coalition S  such that

  ∑
i∈S

y i≤v S  and yi x i for all i∈S

Thus, if x  is in the core, any coalition which forms, either says x  is the best 

imputation for it. Notice there can be more than one imputation in the core. We 

provide a result which can be found in Thomas (1984). 

Theorem: x  is in the core if and only if

(i) ∑
i=1

n

xi=v N  ,  and

(ii) ∑
i∈S

x i≥v S   for all S⊂N

4 Thomas, L.C., 1984. Games, Theory and Applications. Ellis Horwood Limited 
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Once the concepts of an imputation and the core are given, we can apply the 

core solution in our model. To apply the core, it is feasible to consider in a better 

way its 0-1 reduction. It must satisfy:

w S =kv  S ∑
i∈S

wi (16)

Such that:

 
w  i =0 ;
w 1,2,3 =1

Taking the characteristic functions of the model 

v  {1 } =v 1 =0 v 2  {2 } =v 2 =0 v  {3 } =0

v  {1,2 } =v 1,2 =0

v  {1,3 } =v 1,3 =
 β1−λc s1γ1 

2

4γ1

v  {2,3 } =v 2,3 =
 β 2− λcs2 γ2 

2

4γ2

v  {1,2,3 } =v 1,2,3 =
 β1−λc s1γ1 

2

4γ1


 β2− λcs2γ 2

2

4γ2

Next we look for the value w S  . To simplify the mathematical calculation, we 

denote α=
 β1−λcs1 γ1

2

4γ1

 and τ=
 β2−λcs2 γ2 

2

4γ2

.

Applying equation (16), we get:

w 1 =kv 1 w1=k0w1=0

w 2 =k0w2=0

w 3 =kv 3 w3=k0w3=0

w 1,2,3 =kv 1,2,3 w1w2w3=1

k=
1
v 1,2,3 

w 1,2 =kv 1,2 w1w2=0

w 1,3 =kv 1,3 w1w3=
v 1,3 

v 1,2,3 
=

α
ατ

w 2,3 =kv 2,3 w2w3=
v 2,3 

v 1,2,3 
=

τ
ατ
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These equations are the characteristic functions reduced to 0-1. And once we 

have reduced the characteristic function, we can then apply the reduced core. It 

must satisfy the following:

x i≥0

x1x2≥w 1,2 =0

x1x3≥w 1,3 =η

x2 x3≥w 2,3 =σ
x1x2 x3=1=ς

Where η ,σ  and ζ  denote the characteristic functions in the 0-1 reduced core.

So, we can get the feasible set of payoffs of the model as the figure 2 shows. 

Figure 2: The reduced core solution

The painted area is the reduced core solution. Therefore all the points of the 

reduced core are possible solutions for the game played by the three agents 

under  consideration.  Moreover,  under  the  condition  that  ησ≤η∗σ  in  the 

reduced  game,  the  game  is  convex  in  the  sense 

v S v T ≤v S∪T v S∩T   for all  S  and T5 subsets of  {1,2,3 } . The last 

property is also valid for non-reduced games.

In the case that the characteristic function is convex, then both the reduced and 

non-reduced core are non-empty, and have a regular structure. In particular, 

there is the Shapley value which is the center of gravity of the extreme points of 

5 Shapley, Lloyd, 1971. Cores of convex games. International Journal of Game Theory 1, 11-26
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the core. If the core is only a point, the Shapley value is unique and coincides 

with the core (Shapley, 1965). 

2.6-THE SHAPLEY VALUE

A solution  concept  for  the  game  under  consideration  is  the  Shapley  value 

(Peleg  and  Sudhölter,  2003)  and  (Branzei  and  Tijs,  2005).  Shapley  (1953) 

looked at what each player could reasonably get before the game has begun. 

He put three axioms, which he called  φi  v  , player i´s expectation in a game 

with a characteristic function v , should satisfy the following:

S1: φi  v   is independent of the labeling of the players. If π  is a permutation of 

1, 2,...., n and π v  is the characteristic function of the game, with the players 

numbers permuted by π , then φπ i 
πv =φi v  .

S2: The sum of the expectations should equal the maximum available from the 

game, so 

∑
i=1

n

φ i v =v N 

S3:  If  u , v  are  the  characteristic  functions  of  two  games,  uv  is  the 

characteristic function of the game playing both games together. φ  must satisfy 

φi  uv =φi u φi v  .

Given these assumptions, Shapley proved the following theorem:

Theorem. There is only one function which satisfies S1, S2 and S3, namely:

φi  v = ∑
S :i∈S

¿S−1 ! n−¿S !
n !

v S −v S− {i }  

Where the summation is over all coalitions S  which contain player i and # S  is 

the number of players in the coalition S . φi  v   is called the Shapley value. The 

quantity  φi  may  be  interpreted  as  the  “equity  value”  associated  with  the 

position of the i-th player in the game (Shapley, 1965).

In our model, the Shapley value is:

For downstream firm 1,
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φ1  v =
1
2

 β1−λcs1 γ1
2

4γ1

For downstream firm 2,

φ2 v =
1
2

 β 2− λcs2 γ2 
2

4γ2

For the supply firm

φ3  v =
1
2   β1− λcs1γ1 

2

4γ1


 β 2−λcs2 γ2 

2

4γ2


And the total value created is equal to 
 β1− λcs1γ1 

2

4γ1


 β2−λcs2 γ2 

2

4γ2

. As it can be 

checked, this total value is equal to the first best and to the value obtained when 

the  three  firms  cooperate  with  each  other.  That  is,  the  grand  coalition’s 

characteristic function.

The Shapley value indicates how the total benefits can be split in a fair way. We 

can see that the supplier gets more benefits compared with the benefits that 

each  downstream  firm  gets.  This  indicates  what  we  posed  in  the  previous 

section that the cooperative game theory attempts to answer how the total value 

is divided up among various players. We remark that this answer will depend on 

the bargaining power of the players, and this is determined by which players are 

most needed. In this model, the supplier is the most needed because the firms 

have incentives to merger or to be vertically integrated with the supply firm, for 

the  reason  that  a  merger  or  the  vertical  integration  ensures  them that  the 

production will have the required quality. In other words, the bargaining power of 

the  supplier  relies  on  the  specificity  of  the  investments  because  it  is  this 

specificity  what  makes  the  cooperation  credible.  If  the  investments  were 

general,  non-specific,  the  cooperation  framework  would  not  be  enforceable 

because  each  player  could  sell  or  produce  outside  the  relationship.  Such 

bargaining  power  is  measured  by  the  Shapley  value  and  it  is  what  makes 

possible the cooperation among the three players, achieving a Pareto optimum 

solution.  Thus,  this  higher  supplier’s  bargaining  power  is  what  makes  the 

upstream-downstream relationship an enforceable one. As a result of this, if the 

the  three  firms commit  to  cooperate  and they distribute  the  benefits  as  the 
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Shapley value indicates, at time 0, they will decide the quantity level and the 

prices that maximize total welfare. 

3- CONCLUSIONS

In  this  paper  we have developed a  model  within  the  upstream-downstream 

relationship that attempts to find an alternative solution to vertical integration. 

Our contribution is twofold: first, a mathematical part where we show how to 

apply the maximin to compute the characteristic functions of the model;  and 

second, an economic contribution, where we explain how cooperation can lead 

to organizational forms that generate more value. In fact, we set another way to 

treat the upstream-downstream relationship under incomplete contracts and a 

cooperative framework, providing an alternative to vertical integration.

As a solution, vertical integration presents some problems and it seems to be a 

poor solution under certain circumstances. In particular, the existence of these 

failures made us wonder if there could be another way to solve those problems 

that vertical  integration did not solve.  More specifically,  what  happens if  the 

supply firm does not want to be vertically integrated? What happens if the firms 

decide to cooperate instead of being vertically integrated under the presence of 

specific investments? To answer these questions we have developed a model 

where the firms cooperate with each other. We find that, under cooperation, the 

total  value generated is Pareto optimum if  they cooperate and distribute the 

benefits through the Shapley value solution. The Shapley value measures the 

power that firms enjoy in the bargaining process, where bargaining power under 

cooperative  game  theory  is  defined  in  terms  of  how  much  each  player  is 

needed.  The  result  of  our  model  is  that  the  supplier’s  bargaining  power  is 

determined by the specificity of the investments and this makes the cooperation 

among  the  firms  possible,  and  the  upstream-downstream  relationship 

enforceable. As a consequence, the first best, that maximizes the total welfare, 

can be achieved.

In this paper, we have presented a one-shot supply transaction. We want to 

consider  further  developments  of  this  model,  with  n-periods  and  more 

participants,  in  our  future  research.  In  such  scenarios,  one  must  include 
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relational contracts and the reputation of the firms, increasing the complexity of 

the analysis. We are also interested in the use of biform games, which combine 

both the non-cooperative game theory and the cooperative game approach in 

the same analysis. We believe that more efforts should be implemented in this 

direction to achieve a better understanding of organizational forms. 
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